Differentially Private Best Subset Selection Via Integer Programming

Problem Definition and Motivation

Best Subset Selection (BSS):

min lly — X813 st. 18l <s 183 < 7 (1)

e An important methodological problem

e Can be computationally challenging

o Recent work uses Mixed Integer Programming (MIP) to solve
large BSS instances |1,2].

(e, 0)-Differentially Private (DP) Algorithm A:
P(A(D) e K) < eP(A(D") € K)+ 6

for any measurable event K C range(.4) and for any
pair of neighboring datasets D and D’.

Goal: Designing an (g, 0)-DP algorithm for variable
selection (i.e., optimal location of nonzeros) in the BSS.

Current Algorithms for DP-BSS:

e convex relaxations, private Lasso |3, 4, 5, 6]
o Markov chain mixing |7]

Recent work has shown that (non-private) BSS can have
favorable practical and theoretical properties over its
convex relaxations under certain settings [8,9].

Our Proposal: A new DP-variable selection method
for the original BSS problem (1). We use
echniques from MIP to scale-up our selection procedure.

—

Problem Formulation

Define our outcome set as O = {5 C [p| : |S| = s} and
he objective for each S as:

R(S,D) = min |ly — XsB|f; st. [|B]l5 <7
BRI

—

The global sensitivity is

A = max max

. R(S.D) - R(S.D).
Se® D,D’ are neighbors

Lemma (x): If |y| < b, fory € YV, and ||z||o < b, for
x € X. Then, A < sz + 2b1r°s.
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DP Algorithm

o Vk € [R] where R < (%), define
Sp(D) € argmin R(S,D) s.t. S C[pl, |S| = s,
S

S+ S;(D), Vi € [k — 1
o Si(D) can be obtained by solving a series of MIPs:
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where Sy(D) = {i : 2" £ 0},
o Off-the-shelf solvers such as Gurobi can obtain globally

optimal solutions to the MIP above for moderately-sized
Instances.

Define the following probability distribution:
exp (—eR(Sk(D), D)/(24))

Py(k) o i(@ _ R) exp (—ER(SR(D)v D)/(QAD

itk<R
ithk=R+1

Algorithm BSS with DP guarantees

1. procedure M(D,b,,b,,r,R,T)
2 Clip X,y to b, b, respectively, as in (x). Take A as
in (x). Form P,

3 Draw a(D) ~ Py,

4 if a(D) < R then

5: return Sa(p)(p)

6 else

7 return a uniform draw from {S”k k> R}

Theorem 1: Suppose 1 < R < (7). The procedure M is
(,0)-DP. Moreover, P(M(D) = 5i(D)) > Py(1).

e No need to sample from a non-uniform distribution with
exponentially large support.

CC]

e Intuition: “Flatten” the tail of exponential mechanism

10].

Numerical Experiments
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Conclusion

e A new pure-DP algorithm for variable selection in BSS (1).
e We use MIP techniques to develop our DP variable selec-
tion algorithm.

e (Good statistical performance and scalable to p ~ 250.
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