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Problem Definition and Motivation

• Best Subset Selection (BSS):
min
β∈Rp

∥y − Xβ∥2
2 s.t. ∥β∥0 ≤ s, ∥β∥2

2 ≤ r2 (1)

• An important methodological problem
• Can be computationally challenging
• Recent work uses Mixed Integer Programming (MIP) to solve

large BSS instances [1,2].

• (ε, δ)-Differentially Private (DP) Algorithm A:
P(A(D) ∈ K) ≤ eεP(A(D′) ∈ K) + δ

for any measurable event K ⊂ range(A) and for any
pair of neighboring datasets D and D′.

• Goal: Designing an (ε, 0)-DP algorithm for variable
selection (i.e., optimal location of nonzeros) in the BSS.

• Current Algorithms for DP-BSS:
• convex relaxations, private Lasso [3, 4, 5, 6]
• Markov chain mixing [7]

• Recent work has shown that (non-private) BSS can have
favorable practical and theoretical properties over its
convex relaxations under certain settings [8,9].

• Our Proposal: A new DP-variable selection method
for the original BSS problem (1). We use
techniques from MIP to scale-up our selection procedure.

Problem Formulation

• Define our outcome set as O = {S ⊆ [p] : |S| = s} and
the objective for each S as:

R(S, D) = min
β∈R|S|

∥y − XSβ∥2
2 s.t. ∥β∥2

2 ≤ r2

• The global sensitivity is
∆ = max

S∈O
max

D,D′ are neighbors
R(S, D) − R(S, D′).

Lemma (∗): If |y| ≤ by for y ∈ Y , and ∥x∥∞ ≤ bx for
x ∈ X . Then, ∆ ≤ 2b2

y + 2b2
xr2s.

DP Algorithm

• ∀k ∈ [R] where R ≪
(p
s

)
, define

Ŝk(D) ∈ arg min
S

R(S, D) s.t. S ⊆ [p], |S| = s,

S̸= Ŝi(D), ∀i ∈ [k − 1]
• Ŝk(D) can be obtained by solving a series of MIPs:

min
z(k),β(k),θ(k)

∥y − Xβ(k)∥2
2

s.t. β(k), θ(k) ∈ Rp, z(k) ∈ {0, 1}p, θ(k) ≥ 0,
p∑

i=1
z

(k)
i = s,

p∑
i=1

θ
(k)
i ≤ r2, (β(k)

i )2 ≤ θ
(k)
i z

(k)
i ∀i ∈ [p]

∑
i∈Ŝj(D)

z
(k)
i ≤ s − 1

2
, j = 1, · · · , k − 1.

where Ŝk(D) = {i : ẑ
(k)
i ̸= 0}.

• Off-the-shelf solvers such as Gurobi can obtain globally
optimal solutions to the MIP above for moderately-sized
instances.

Define the following probability distribution:

P0(k) ∝


exp

(
−εR(Ŝk(D), D)/(2∆)

)
if k ≤ R((p

s

)
− R

)
exp

(
−εR(ŜR(D), D)/(2∆)

)
if k = R + 1.

Algorithm BSS with DP guarantees
1: procedure M(D, bx, by, r, R, T )
2: Clip X, y to bx, by, respectively, as in (∗). Take ∆ as

in (∗). Form P0.
3: Draw a(D) ∼ P0
4: if a(D) ≤ R then
5: return Ŝa(D)(D)
6: else
7: return a uniform draw from {Ŝk : k > R}

Theorem 1: Suppose 1 < R <
(p
s

)
. The procedure M is

(ε, 0)-DP. Moreover, P(M(D) = Ŝ1(D)) ≥ P0(1).
• No need to sample from a non-uniform distribution with

exponentially large support.
• Intuition: “Flatten” the tail of exponential mechanism

[10].

Numerical Experiments

SNR = 2, ε = 5, s = 5 SNR = 5, ε = 2, s = 7
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Conclusion

• A new pure-DP algorithm for variable selection in BSS (1).
• We use MIP techniques to develop our DP variable selec-
tion algorithm.
• Good statistical performance and scalable to p ≈ 250.
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