Guarding Multiple Secrets: Enhanced Summary Statistic Privacy for Data Sharing

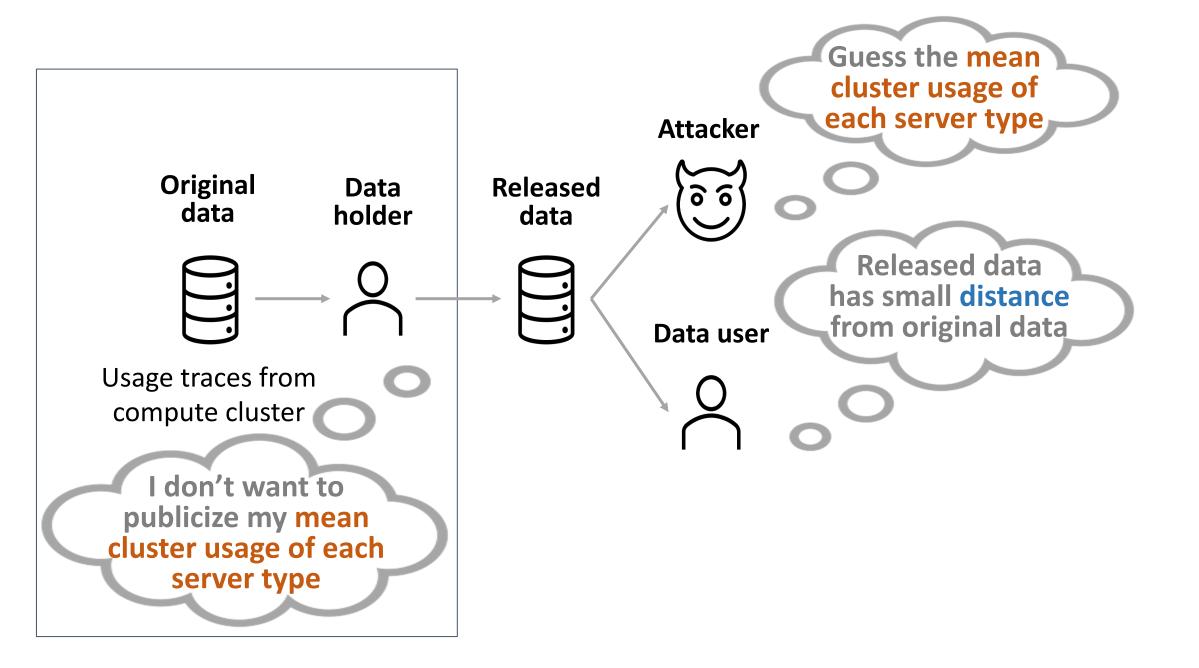
Shuaiqi Wang, Rongzhe Wei, Mohsen Ghassemi, Eleonora Kreacic, Vamsi K. Potluru

We propose a framework to define, analyze, and protect multi-secret summary statistics privacy in data sharing. Given an attacker's objective spanning from inferring a subset to the entirety of summary statistic secrets, we systematically design and analyze tailored privacy metrics. We analyze the tradeoff between privacy and distortion.

Data Sharing in Practice

• Motivating Scenario

Data holder produces released cluster usage traces for the data user.



Privacy Metric Design

Within diverse data sharing paradigms, we design tailored privacy metrics. (see paper for the detailed definitions)

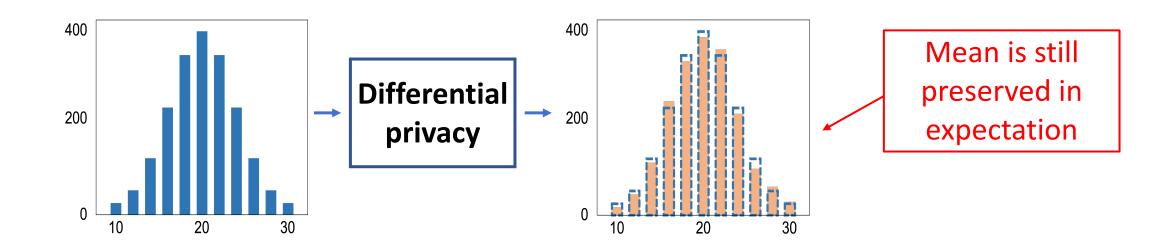
Union Privacy: prevents attackers guessing any secret correctly

probability of the attacker guessing *any* secret to within a tolerance range, ϵ_i for secret g_i

Intersection privacy: secrets are compromised only when the attacker guesses all of them simultaneously

• Differential Privacy Doesn't Work

Differential privacy is designed to *preserve* the underlying data distribution, while protecting individual-level privacy.



Problem Formulation

Distributional secrets to protect : Data holder mathematically defined as functions of the data distribution, e.g., secrets g =means in the motivating scenario

probability of the attacker guessing *all* secrets to within a tolerance range, ϵ_i for secret q_i

Group privacy: secrets are compromised when the attacker guesses a certain group of them

probability of the attacker guessing *any certain group* of secrets to within a tolerance range, ϵ_i for secret q_i

l_n norm privacy: ensures a significant separation between original and attacker-guessed secret vectors

probability of l_p norm distance between original and attacker-guesséd secret being within a tolerance ϵ

Privacy-Distortion Tradeoff

Theorem (Union Privacy)

(see paper for the detailed statements of each privacy metric)

For any T > 0, when $\Pi_{\epsilon} \leq T$, we have •

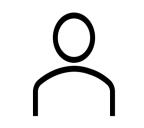
$$\Delta > 2\gamma \left[\frac{1}{1 - (1 - T)^{1/d}} - 1 \right] \cdot \left(\prod_{i \in [d]} \epsilon_i \right)^{1/d},$$

Attacker

Privacy metric Π_{ϵ} :

given the attacker's objective, probability of guessing the secrets within tolerance ϵ by the best attack strategy

Distortion metric Δ : Data user



worst-case distance between the original distribution and the released distribution

Objective:

 $\min \Pi_{\epsilon}$ subject to $\Delta \leq T$

where *d* is the secret number and

distance between two potential distributions of original data $\gamma = \min$ difference between two potential secrets of original data

Future Work

- Develop mechanisms tailored to various data distributions and secret types that achieves (near) optimal privacy-distortion tradeoffs.
- Measure privacy empirically for arbitrary secrets and data distributions.

Shuaiqi Wang: shuaiqiw@andrew.cmu.edu Mohsen Ghassemi: mohsen.ghassemi@jpmchase.com Vamsi K. Potluru: vamsi.k.potluru@jpmchase.com

Rongzhe Wei: rongzhe.wei@gatech.edu Eleonora Kreacic: eleonora.kreacic@jpmchase.com

JPMORGAN

CHASE & CO