
We propose a framework to define, analyze, and protect multi-secret summary statistics privacy in data sharing. Given 
an attacker’s objective spanning from inferring a subset to the entirety of summary statistic secrets, we systematically 
design and analyze tailored privacy metrics. We analyze the tradeoff between privacy and distortion.

Guarding Multiple Secrets: Enhanced Summary Statistic Privacy 
for Data Sharing

Shuaiqi Wang, Rongzhe Wei, Mohsen Ghassemi, Eleonora Kreacic, Vamsi K. Potluru

Shuaiqi Wang: shuaiqiw@andrew.cmu.edu Rongzhe Wei: rongzhe.wei@gatech.edu
Mohsen Ghassemi: mohsen.ghassemi@ jpmchase.com Eleonora Kreacic: eleonora.kreacic@ jpmchase.com
Vamsi K. Potluru: vamsi.k.potluru@jpmchase.com

Data Sharing in Practice
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• Differential Privacy Doesn’t Work
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Privacy metric 𝛱!:
given the attacker’s objective, probability 
of guessing the secrets within tolerance 𝜖
by the best attack strategy

Distortion metric Δ:
worst-case distance between the original 
distribution and the released distribution

Objective:
minΠ" subject to Δ ≤ 𝑇

Differential privacy is designed to preserve the 
underlying data distribution, while protecting 
individual-level privacy.

Theorem (Union Privacy)
(see paper for the detailed statements of each privacy metric)

• For any 𝑇 > 0, when Π! ≤ 𝑇, we have 
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where 𝑑 is	the	secret	number	and
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•Develop mechanisms tailored to various data
distributions and secret types that achieves (near) 
optimal privacy-distortion tradeoffs.

•Measure privacy empirically for arbitrary secrets 
and data distributions.

• Motivating Scenario
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Data holder produces released cluster usage traces for 
the data user.

Data holder Distributional secrets to protect :
mathematically defined as functions of 
the data distribution, e.g., secrets 𝑔 = 
means in the motivating scenario

Within diverse data sharing paradigms, we design 
tailored privacy metrics. (see paper for the detailed definitions)

Union Privacy: prevents attackers guessing any secret 
correctly
probability of the attacker guessing any secret to 
within a tolerance range, ϵ& for secret 𝑔&

Intersection privacy: secrets are compromised only 
when the attacker guesses all of them simultaneously
probability of the attacker guessing all secrets to 
within a tolerance range, ϵ& for secret 𝑔&

Group privacy: secrets are compromised when the 
attacker guesses a certain group of them
probability of the attacker guessing any certain group
of secrets to within a tolerance range, ϵ& for secret 𝑔&

𝒍𝒑 norm privacy: ensures a significant separation 
between original and attacker-guessed secret vectors
probability of 𝑙+ norm distance between original and 
attacker-guessed secret being within a tolerance ϵ


