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Problem Definition and Motivation

» Best Subset Selection (BSS):

min [ly — X8z st. [Blo<s, B2 < r* (1)
BERP

» An important methodological problem
» Can be computationally challenging

» Recent work uses Mixed Integer Programming (MIP) to solve
large BSS instances [1,2].
» (e, 0)-Differentially Private (DP) Algorithm A:
P(A(D) € K) < eP(A(D') € K) + 6

for any measurable event K C range(A) and for any pair of
neighboring datasets D and D’.

2/12



Problem Definition and Motivation

» Goal: Designing an (,0)-DP algorithm for variable selection
(i.e., optimal location of nonzeros) in the BSS.

» Current Algorithms for DP-BSS:

> convex relaxations, private Lasso [3,4,5, 6]
» Markov chain mixing [7]

» Recent work has shown that (non-private) BSS can have
favorable practical and theoretical properties over its convex
relaxations under certain settings [8,9].

» Our Proposal: A new DP-variable selection method for the
original BSS problem (1). We use techniques from MIP to
scale-up our selection procedure.
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Exponential Mechanism

Lemma (From [10])

The exponential mechanism Ag(-) that follows
D
PAe(D) o) x o (-0 ) voco ()

ensures (g,0)-DP.
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Problem Formulation

Define our outcome set as O = {S C [p] : |S| = s} and the
objective for each S as:

R(S,D) = min_|ly — XsB|3 st. [|B]3 < r?
BERIS]

The global sensitivity is

A = max max R(S,D) — R(S,D').
5€0O D,D’ are neighbors

Lemma (x): If |y| < b, for y € Y, and ||x||oc < by for x € X
Then, A < 2b7 + 2b3r7s.
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MIP Setup
> Vk € [R] where R < (?), define

Sk(D) € argminR(S,D) s.t. SCp], |S|=s,
S

X S+ 5(D),Vi € [k — 1]
» Sk(D) can be obtained by solving a series of MIPs:

min — xB3K)|2
o ly — XBY|13

s.t. B9, 9K e rP 2(K) ¢ {0,1}7, 6K > 0, Zz(k =s,

1
Zzi(k)<s_§a./: 5 ,k—].
i€$;(D)

where 5,(D) = {i 2,-(k) # 0}
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DP Algorithm

Define the following probability distribution:

oy 4 (~=R(5(P). D)/ (21)) if k <R
0 ((5) = R) exp (~eR(Sr(P), D)/(28))  if k= R+1.

S

Algorithm BSS with DP guarantees

1: procedure M(D, by, by,r,R, T)
2: Clip X, y to by, by, respectively, as in (). Take A as in (x).
Form Pg.
Draw a(D) ~ Py
if a(D) < R then
return §Q(D)(D)
else
return a uniform draw from {$, : k > R}

N ok w
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DP Guarantees

Theorem 1: Suppose 1 < R < (g) The procedure M is
(€,0)-DP. Moreover, P(M(D) = 51(D)) > Pp(1).
> No need to sample from a non-uniform distribution with
exponentially large support.
» Intuition: “Flatten” the tail of exponential mechanism [10].

8/ 12



Numerical Experiments
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Conclusion

» A new pure-DP algorithm for variable selection in BSS (1).

» We use MIP techniques to develop our DP variable selection
algorithm.

> Good statistical performance and scalable to p ~ 250.
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